ASTRO-K: Finding Top-k Sufficiently Distinct Indoor-Outdoor Paths

Vasilis Ethan Sarris, Constantinos Costa, Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh, USA vas82@pitt.edu, {costa.c, panos}@cs.pitt.edu

The 2nd IEEE Intl. Workshop on ALgorithms for Indoor Architectures and Systems Paphos, Cyprus, June 6, 2022

Outline

- Motivation
- Problem Formulation
- ASTRO-K
- Experimental Evaluation
- Conclusions & Future Work

Motivation

- CAPRIO: Indoor-outdoor pedestrian path recommendation system that suggests the shortest distance path while satisfying user-mobility constraints
- ASTRO: Constraint-based path-finding algorithm which factors in the predicted congestion of a space when constructing a path
- Observation: ASTRO may inadvertently contribute towards congestion problems by funneling people into a single area

Congested

Spaces

COVID-19

Distancing

Mobility disability

Problem & Objective

- Outdoor Vertices comprised of Indoor graphs and represent buildings
- Indoor Graph the path between any two doors
- Indoor Vertices doors allowing people to enter and exit buildings

ASTRO-K: Problem Formulation

- ASTRO-K: Given an Indoor-Outdoor graph, a source Outdoor
- vertex, a terminal Outdoor vertex, a set of constraints, and k,
- find the top-k sufficiently distinct paths from the source Outdoor vertex to the terminal Outdoor vertex which satisfies the given constraints.

Congestion (C) – max congestion (w.r.t the max amount of people) within a 3m² cell during a 5-minute window.

Outdoor Exposure (E) – max amount of time allowed to traverse any given edge.

Time Limit (T) – max time allowed to traverse a path

Path Similarity (\theta) – max percentage of total edge distance shared between any two paths in the result set

Components of ASTRO-K

- ASTRO: Given an Indoor-Outdoor graph along with a source and a destination point, produce a path with the minimal total time from the source to the destination which satisfies the constraints.
- ESX: Given a source and terminal node, find k paths that are sufficiently dissimilar to each other with respect to a similarity threshold θ, and as short as possible.

- ASTRO is based on A* Algorithm that at each step it picks the node according to a score 'f' -> f = g+h
 - g = the movement cost
 - h = the estimated movement cost

• ESX is a performance-oriented heuristic algorithm that removes edges from the graph incrementally and then computing the shortest path on the updated graph

ASTRO-K Algorithm

Algorithm 2 ASTRO-K

Input: s: source, t: terminal, O: Outdoor Vertices, Π : Con
straints;
Output: <i>P</i> : Best Paths
1: init List P, Priority Queue PQ, Set E_{DNR} , Set E_R
2: $P.append(ASTRO(s, t, O, E_R, \Pi))$
3: for $e \in P.tail()$ do
4: $PQ.push(e)$
5: while $ P < k$ and PQ not empty do
$6: p \leftarrow P.tail()$
7: while PQ not empty and $Sim(p, P) > \theta$ do
8: $e \leftarrow PQ.pop()$
9: if $e \in E_{DNR}$ then
10: continue
11: $E_R \leftarrow E_R \cup \{e\}$
12: $p \leftarrow ASTRO(s, t, O, E_R, \Pi)$
13: if $p = NULL$ then
14: $E_R \leftarrow E_R - \{e\}$
15: $E_{DNR} \leftarrow E_{DNR} \cup \{e\}$
16: if $Sim(p, P) < \theta$ then
P.append(p)
18: $PQ.clear()$
19: for $e \in p$ do
20: $PQ.push(e)$
21: return P

Algo	orithm 1 Modified ASTRO used in Algorithm 2
Inpu	it: s: source, t: terminal, O: Outdoor Vertices, E_R : Edges
	Removed, II: Constraints;
Out	put: p: Best Path;
1:	init PQ OPEN, Set CLOSED
2:	init Outdoor Vertex start with s
3:	OPEN.push(start)
4:	while OPEN not empty do
5:	$curr \leftarrow OPEN.pop()$
6:	if $curr = NULL$ then
7:	return ReconstructPath(curr)
8:	if $curr \notin CLOSED$ then
9:	$CLOSED \leftarrow CLOSED \cup \{curr\}$
10:	for $o_i \in \{O - CLOSED\}$ do
11:	$IndoorGraph \leftarrow o_i[IndoorGraph] - E_R$
12:	for $in_i \in IndoorGraph$ do
13:	$\overrightarrow{s_1} \leftarrow Status(curr[out], in_i, curr[g])$
14:	for $out_i \in \{IndoorGraph - \{in\}\}$ do
15:	$now = curr[g] + \overrightarrow{s_1}[total]$
16:	$\overrightarrow{\mathbf{s}_2} \leftarrow Status(in_i, out_i, now)$
17:	$\overrightarrow{s} \leftarrow \overrightarrow{s_1} + \overrightarrow{s_2}$
18:	$g \leftarrow curr[g] + \overrightarrow{s}[total]$
19:	if $g < o_i[g]$ and $Check(\Pi, \overrightarrow{s})$ then
20:	init Outdoor Vertex toAdd
21:	OPEN.push(toAdd)

Experimental Methodology

- Datasets:
 - PITT: University of Pittsburgh campus and consists of 9 buildings, 2-6 doors per building
 - UCY: University of Cyprus campus and consists of 9 buildings, 2-7 doors per building
- Congestion Data:
 - Camera analysis on a 2-hour session and generate congestion data using the procedure EPICGen generator using μ_a = 4, σ_a = 1, μ_d = 1, σ_d = 0.2 and a walking speed of 1.4 m/s
- Metrics:
 - Average Congestion (C): average percentage of congestion (with respect to the maximum amount of people) within a 3m² cell of a building during a 5 minute window.
 - Number of People (P): amount of people introduced within a 5 minute window.

Experiments

- Experiment 1: average congestion of the recommended paths is reduced by 4.5X for the PITT dataset with K = 6 and 2.6X for the UCY dataset with K = 3.
- Experiment 2: the number of people which can follow the recommended paths is increased by 5.9X for the PITT dataset with K = 6 and 2.8X for the UCY dataset with K = 3.

Experiments (cont.)

•

Time	k=1	k=2	k=3	k=4	k=5	k=6
Indoor	23.94	41.62	49.88	50.54	55.09	58.12
Outdoor	377.215	364.52	358.12	365.88	369.60	373.25
Total	401.16	406.14	408.01	416.43	424.70	431.38

Experiment 3: average total time of the recommended paths is increased by 7% for K = 6. Furthermore, the average indoor time increases by 2.4X and the average outdoor time decrease by 2% for K = 6.

Conclusions & Future Work

- Major Contribution:
 - A novel top-k sufficiently distinct path finding algorithm ASTRO-K, which is able to recommend paths to more people without inadvertently congesting an area
- Future Work:
 - Include balancing or scheduling of route recommendations
 - Make Congestion a first-class constraint

ASTRO-K: Finding Top-k Sufficiently Distinct Indoor-Outdoor Paths

Thank You! Any Questions?

Vasilis Ethan Sarris, Constantinos Costa, Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh, USA vas82@pitt.edu, {costa.c, panos}@cs.pitt.edu

The 2nd IEEE Intl. Workshop on ALgorithms for Indoor Architectures and Systems University of Cyprus (UCY), Paphos, Cyprus, June 6, 2022