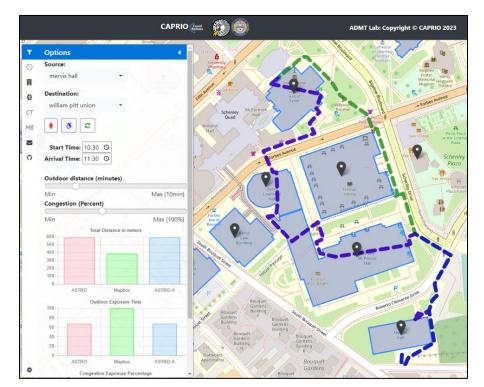
Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time

Vasilis Ethan Sarris

Panos K. Chrysanthis, Constantinos Costa

University of Pittsburgh Pittsburgh, USA Rinnoco Ltd. Limassol, Cyprus



Aug 25, 2023 @ 18th International Symposium on Spatial and Temporal Data

Motivation

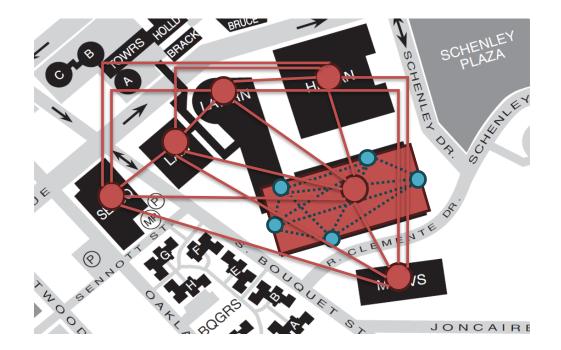
- CAPRIO [VLDB'19, MDM'20 & 23] is a navigation app leveraging ASTRO [TSAS'22], a constraint-based indoor-outdoor path finding algorithm
- Path Finding Constraints
 - Outdoor Exposure (E)
 - Total Time Limit (T)
 - Congestion (C)
 - Accessibility (A)

https://db.cs.pitt.edu/caprio/

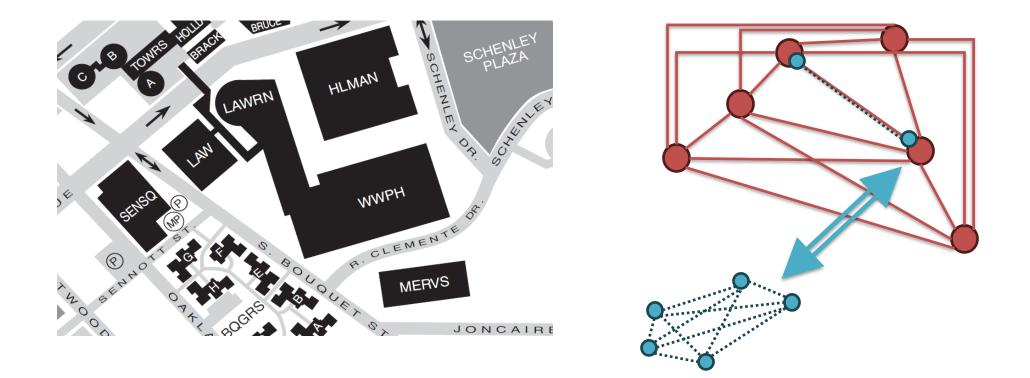
Objective

- Users whose primary concern is congestion must manually find their preferred path by tuning the congestion constraint
- Develop a path finding algorithm based on congestion to better serve these users

https://db.cs.pitt.edu/caprio/



- Motivation
- Indoor-Outdoor Graphs
- ASTRO-C: Least Congestion Path Finding
- Random Graph Generator
- Experimental Evaluation
- Conclusion



Indoor-Outdoor Graph

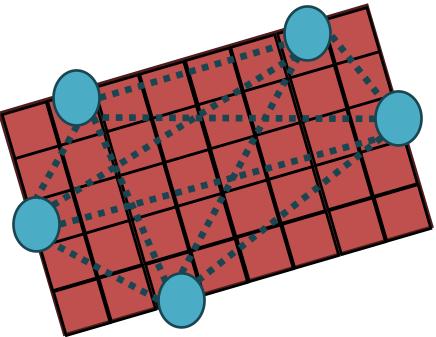
Indoor-Outdoor Graph

Aug 25, 2023 @ 18th International Symposium on Spatial and Temporal Data

- Motivation
- Indoor-Outdoor Graphs
- ASTRO-C: Least Congestion Path Finding
- Random Graph Generator
- Experimental Evaluation
- Conclusion

Least Congestion Path Finding

- Given:
 - Indoor-Outdoor Graph $G(V_o, E_o, G_{Indoor})$
 - source outdoor vertex v_s
 - terminal outdoor vertex v_t
 - set of user-given constraints $-\Pi = (E, T, C, A)$
- Find:
 - · Least congested, constraint-satisfying, indoor-outdoor path


How do we define congestion?

- Based on model used by EPICGEN [VLDB'21]
- Congestion is predicted in 5-minute windows w.r.t. a 3m x 3m cell

 $congestion = \frac{\# of \ people \ predicted}{max \# of \ people \ w.r.t.}$ $1m \ social \ distancing$

 Congestion for an indoor edge is the average of predicated congestion

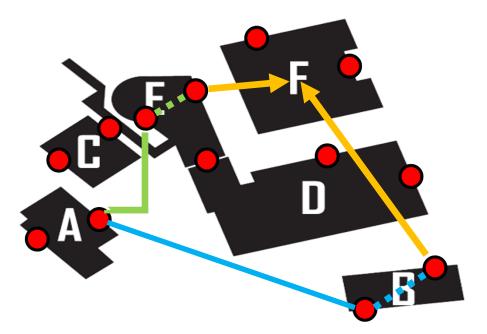
> $\forall cell \in indoor_edge$ AVG (cell[congestion])

Cost Function

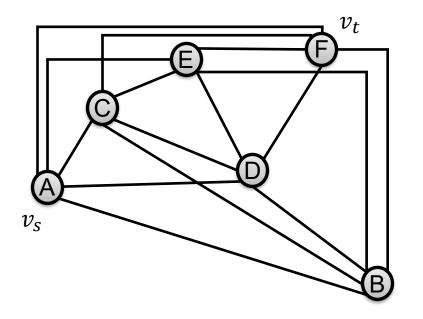
Key Assumption #1

As long as a metric is monotonically increasing, it can be used as the basis for a path finding cost function

$$g(path) = \sum_{e \in path.E_i} e.congestion_{avg}$$

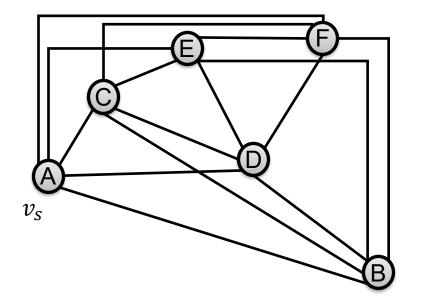


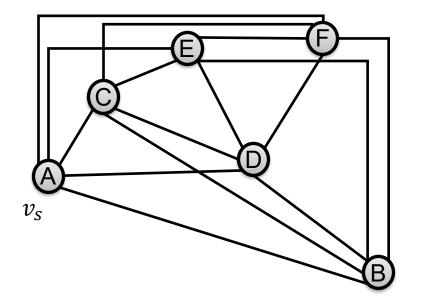
Heuristic Function

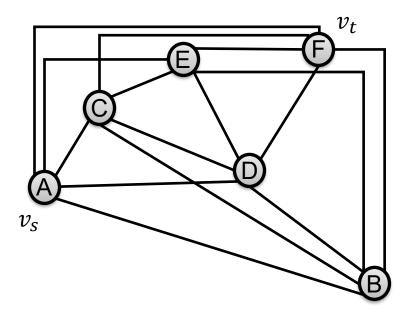

• Key Assumption #2

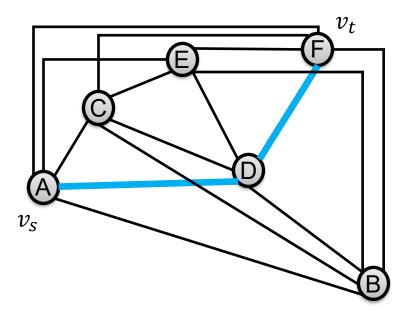
The heuristic function h() can be decoupled from the cost function g() and thus need not use the same metrics

$$h(path) = path[time_{total}] + time_heuristic(path)$$



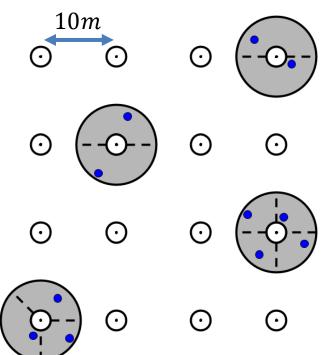

Vertex	Prev	Cost	Time (w/ h)	Visited	PQ
$A(v_s)$				False	Α
В		0	0	False	
С		0	0	False	
D		0	0	False	
Е		0	0	False	
$F(v_t)$		0	0	False	


Vertex	Prev	Cost	Time (w/ h)	Visited	PQ
$A(v_s)$				True	С
В		0	0	False	D
С	А	0.3	13	False	
D	А	0.7	16	False	
E		0	0	False	
$F\left(v_{t} ight)$		0	0	False	


Vertex	Prev	Cost	Time (w/ h)	Visited	PQ
$A(v_s)$				True	D
В		0	0	False	E
С	А	0.3	13	True	
D	А	0.7	16	False	
E	С	0.7	17	False	
$F(v_t)$		0	0	False	

Vertex	Prev	Cost	Time (w/ h)	Visited	PQ
$A(v_s)$				True	F
В	D	1.0	29	False	E
С	А	0.3	13	True	В
D	А	0.8	16	True	
E	С	0.8	17	False	
$F\left(v_{t} ight)$	Е	0.8	18	False	

Vertex	Prev	Cost	Time (w/ h)	Visited	PQ
$A(v_s)$				True	
В	D	1.0	29	False	
С	А	0.3	13	True	
D	А	0.8	16	True	
Е	С	0.8	17	False	
$F(v_t)$	Е	0.8	18	True	

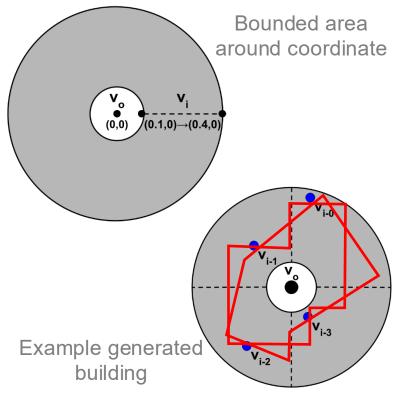


- Motivation
- Indoor-Outdoor Graphs
- ASTRO-C: Least Congestion Path Finding
- Random Graph Generator
- Experimental Evaluation
- Conclusion

Random Graph Generator

• The graph is a square 2d grid

Parameters


- N # of buildings
- P % of area covered by buildings
- h % of high congestion buildings
- m % of medium congestion buildings
- l % of low congestion buildings

constant – equal congestion in all buildings

Building Generation

- Random unoccupied coordinate on grid is chosen for the new outdoor vertex
- 2. Randomly generate between 2-4 indoor vertices within the coordinate's bounded area
 - Lower bound guarantees indoor traversal time
 - Upper bound guarantees no indoor vertices will overlap

- Motivation
- Indoor-Outdoor Graphs
- ASTRO-C: Least Congestion Path Finding
- Random Graph Generator
- Experimental Evaluation
- Conclusion

Experimental Methodology

Algorithms – ASTRO and ASTRO-C

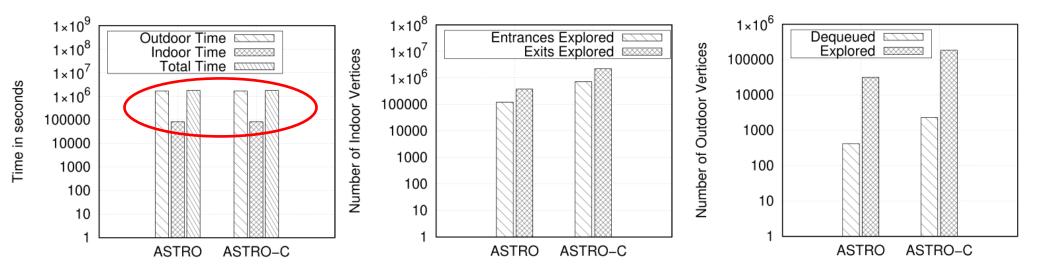
Methodology – generate 10 graphs for each experiment, compare the average results

Graph Configuration -N = 100, P = 0.75, h = 0.3, m = 0.4, l = 0.3, constant = False

Path Constraints – $T = \frac{(2*graph_bounds*distance)}{1.4}$, E = 30m,

C = unbounded, A = False

Metrics – Total Path Time & Avg. Congestion (< 1 meets social distancing guidelines)

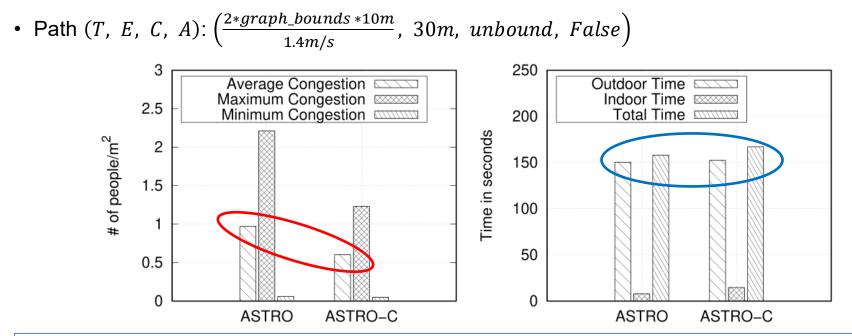


Aug 25, 2023 @ 18th International Symposium on Spatial and Temporal Data

Experiment 1 – Constant Congestion

• Graph (N, P, h, m, l, c): (100, 0.75, 0.3, 0.4, 0.3, True)

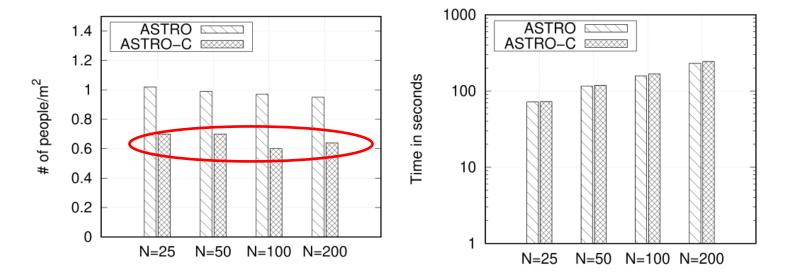
• Path (T, E, C, A): $\left(\frac{2*graph_bounds*10m}{1.4m/s}, 30m, unbound, False\right)$



ASTRO & ASTRO-C find the **same paths in constant congestion** environments

Experiment 2 – Standard Configuration

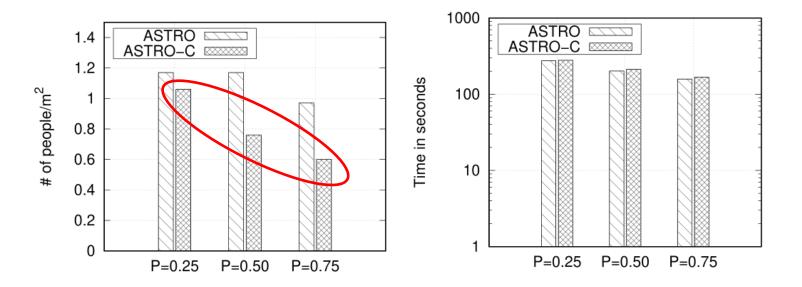
• Graph (N, P, h, m, l, c): (100, 0.75, 0.3, 0.4, 0.3, False)



Paths found by ASTRO-C have significantly less congestion at the expense of minimal additional time

Experiment 3 – # of Buildings

- Graph (N, P, h, m, l, c): ({**25**, **50**, **100**, **200**}, 0.75, 0.3, 0.4, 0.3, False)
- Path (T, E, C, A): $\left(\frac{2*graph_bounds*10m}{1.4m/s}, 30m, unbound, False\right)$

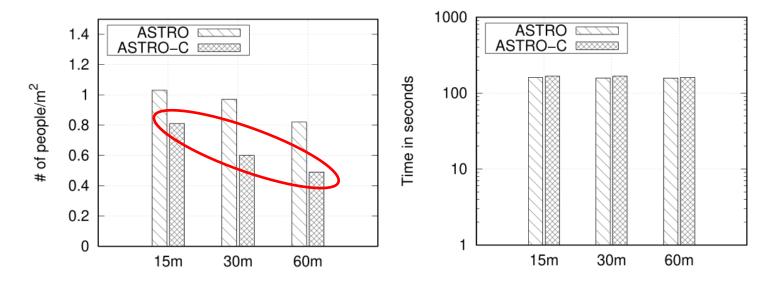


Even as the # of buildings increase, ASTRO-C shows a consistent significant reduction in congestion

Aug 25, 2023 @ 18th International Symposium on Spatial and Temporal Data

Experiment 4 – Building Density

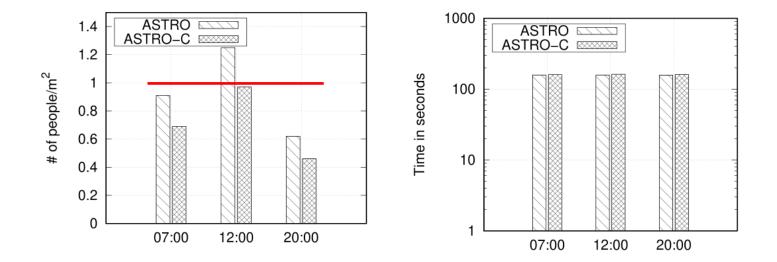
- Graph (N, P, h, m, l, c): (100, {0.25, 0.50, 0.75}, 0.3, 0.4, 0.3, False)
- Path (T, E, C, A): $\left(\frac{2*graph_bounds*10m}{1.4m/s}, 30m, unbound, False\right)$



As density of buildings increases, the reduction in congestion increases as well

Experiment 5 – Outdoor Exposure

- Graph (N, P, h, m, l, c): (100, 0.75, 0.3, 0.4, 0.3, False)
- Path (T, E, C, A): $\left(\frac{2*graph_bounds*10m}{1.4m/s}, \{15m, 30m, 60m\}, unbound, False\right)$



As the outdoor exposure constraint increases, the reduction in congestion increases as well

Experiment 6 – Time of Day

- Graph (N, P, h, m, l, c): (100, 0.75, {[0.4, 0.68, 0.28], [0.68, 0.28, 0.04], [0.28, 0.04, 0.68]}, False)
- Path (T, E, C, A): $\left(\frac{2*graph_bounds*10m}{1.4m/s}, 30m, unbound, False\right)$

ASTRO-C can recommend paths that meet the social distancing throughout the day

Conclusions

Major Contributions

- Generally, ASTRO-C is able to significantly reduce congestion without a significant additional time cost
- The Random Graph Generator can generate usable Indoor-Outdoor graphs which simulate many different environments

Future Work

- Extend the Random Graph Generator to generate dynamic congestion throughout the day
- Open-source the CAPRIO and Random Graph Generator codebases
- Explore departure alternatives to optimize time while reducing potential congestion

Thank You! Any Questions?

Recommending The Least Congested Indoor-Outdoor Paths without Ignoring Time

Vasilis Ethan Sarris

vas82@pitt.edu

Panos K. Chrysanthis

panos@cs.pitt.edu

University of Pittsburgh Pittsburgh, USA **Constantinos Costa**

costa.c@rinnoco.com

Rinnoco Ltd. Limassol, Cyprus

