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Figure 1: Time-based Path Finding may sacrifice exposure risk in order to optimize for time (left); Congestion-based Path
Finding allows us to avoid this sacrifice (right).

ABSTRACT
The exposure to viral airborne diseases is higher in crowded and
congested spaces, the COVID-19 pandemic has revealed the need of
pedestrian recommendation systems that can recommend less con-
gested paths which minimize exposure to infectious crowd diseases
in general. In this paper, we introduce ASTRO-C, an extension of
previous work ASTRO, which optimizes for minimum congestion.
To our knowledge, ASTRO-C is the only solution to this problem
of constraint-satisfying, indoor-outdoor, congestion-based path
finding. Our experimental evaluation using randomly generated
Indoor-Outdoor graphs with varying constraints matching various
real-world scenarios, show that ASTRO-C is able to recommend
paths with, on average a 0.62𝑋 reduction in average congestion,
while on average, total travel time increases by 1.06𝑋 and never
exceeds 1.10𝑋 compared to ASTRO.
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1 INTRODUCTION
Given the economic, environmental and quality of life impact of
traffic congestion, route/outdoor recommendation systems con-
sider traffic congestion and recommend less congested and less-
time consuming alternative routes to a given destination [10]. The
COVID-19 pandemic has revealed an analogous impact of conges-
tion and pointed out for the need of pedestrian recommendation
systems that can recommend less congested paths that minimize

https://orcid.org/0000-0003-4044-5162
https://orcid.org/0000-0001-7189-9816
https://orcid.org/0000-0003-1471-2167
https://doi.org/10.1145/3609956.3609969
https://doi.org/10.1145/3609956.3609969


SSTD ’23, August 23–25, 2023, Calgary, AB, Canada V. E. Sarris, P. K. Chrysanthis and C. Costa

exposure to COVID-19 and infectious viral diseases in general. This
observation led us to develop ASTRO [6], to supportMobile Contact
Avoidance Navigation (MCAN) [17] by implementing CAPRIO [7, 8].

ASTRO (Accessible Spatio-Temporal Route Optimization) is a
novel constraint-satisfying indoor-outdoor pedestrian path find-
ing algorithm, which considers a number of factors including pre-
dicted congestion when finding a least-time path that satisfies a set
of user-given constraints. ASTRO was subsequently extended to
ASTRO-K [20] which finds the top-k sufficiently-distinct constraint-
satisfying indoor-outdoor paths. This extension allowed CAPRIO to
disperse congestion inadvertently created by CAPRIO route recom-
mendations, across a number of paths, thus mitigating its contribu-
tion to the congestion of any one area.

ASTRO and ASTRO-K offer a shortest path to a destination. How-
ever, this may not be the most desirable for an individual with an
underlying health condition and at high-risk for a viral infection.
Such an individual would prefer the least congested path even if
this is longer as it would help maximize the likelihood that this
high-risk user stays healthy.

In this paper, we introduce ASTRO-C, another extension of AS-
TRO, which computes theminimum congestion, constraint-satisfying
Indoor-Outdoor path for a given query. This provides CAPRIO the
ability to recommend paths for those whose primary concern is
not time, but rather potential exposure to a viral infection, other
crowd diseases and sensory-overloading areas (e.g., areas with loud
noise, flashing lights, and/or strong smells).ASTRO-C selects among
equally congested paths the one which is less-time consuming.

We evaluate ASTRO-C experimentally using randomly generated
Indoor-Outdoor graphs with varying graph generation constraints
to showcase various real-world scenarios. Our experimental results
show that ASTRO-C is able to recommend paths with, an average
0.62𝑋 reduction in average congestion, and in the best case a reduc-
tion of 0.56𝑋 , while on average, total travel time increases by 1.06𝑋
and never exceeds 1.10𝑋 compared to ASTRO. These congestion
reduction gains come at the cost of execution time. Compared to
ASTRO, ASTRO-C explores an average 7.55𝑋 more vertices (i.e.,
buildings), yet it scales well with the number of buildings while
retaining the same interactive characteristics as ASTRO.

Our main contributions in this paper are as follows:

• We introduce ASTRO-C, an extension of ASTRO which op-
timizes for minimum congestion without ignoring time. To
our knowledge,ASTRO-C is the only solution to this problem
of constraint-satisfying, indoor-outdoor, congestion-based
path finding.
• We present a random Indoor-Outdoor graph generator for
modeling various real-world scenarios.
• Weperform an experimental evaluation and show thatASTRO-
C is able to return paths that significantly reduce average
congestion along a path.

The rest of the paper is structured as follows. In Section 2, we
review the necessary prior knowledge for ASTRO-C. In Section 3,
we formalize the least-congestion path finding problem as well as
present ASTRO-C in detail. In Section 4, we go in detail describing
the Random Graph Generator. In Sections 5 and 6, we describe the
experimental methodology and results. In Section 7, we discuss
related work before finishing with our conclusions in Section 8.

2 BACKGROUND
In this section, we review the information needed to understand
ASTRO-C . This includes a description of Indoor-Outdoor graphs
(Section 2.1) which are able to represent buildings, doors and corri-
dors within buildings, an overview of theASTRO andASTRO-K con-
straints (Section 2.2), and finally, a review of the ASTRO algorithm
(Section 2.3).

2.1 Indoor-Outdoor Graphs
An Indoor-Outdoor Graph 𝐺 (𝑉𝑜 , 𝐸𝑜 ,𝐺𝑖𝑛𝑑𝑜𝑜𝑟 ) consists of outdoor
vertices 𝑉𝑜 , outdoor edges 𝐸𝑜 and Indoor Graphs 𝐺𝑖𝑛𝑑𝑜𝑜𝑟 (𝑉𝑖 , 𝐸𝑖 ). In-
door Graphs𝐺𝑖𝑛𝑑𝑜𝑜𝑟 are bidirectional weighted graphs which are
comprised of indoor vertices 𝑉𝑖 , representing only the doors allow-
ing people to enter and exit buildings, and edges 𝐸𝑖 represent the
paths between any two indoor vertices. Outdoor vertices are com-
prised of Indoor Graphs and represent buildings. Indoor-Outdoor
Graphs are bidirectional weighted graphs comprised of outdoor ver-
tices and edges represent the outdoor paths between buildings, con-
necting each of their entrances. The structure of an Indoor-Outdoor
Graph enables ASTRO, ASTRO-K and ASTRO-C to find paths seam-
lessly traversing through both indoor and outdoor spaces.

2.2 Mobility Constraints
Mobility constraints capture user preferences and abilities, by tuning
these constraints users can personalize the indoor-outdoor paths
[14] they are recommended.

Definition 2.1. Outdoor Exposure (𝐸) – the maximum amount
of time allowed to traverse any given edge between two outdoor
vertices.

Definition 2.2. Time Limit (𝑇 ) – the maximum amount of time
allowed to traverse the indoor-outdoor path.

Definition 2.3. Congestion (𝐶) – the maximum amount of con-
gestion which can be encountered while traversing between two
indoor vertices. Congestion is measured by 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2.

Definition 2.4. Accessibility (𝐴) – a binary constraint that rep-
resents the requirement for accessible doors, floors and corridors.
For example, sufficiently wide doors (both into and out a building),
with easily accessible automatic door openers and ramps.

2.3 The ASTRO Algorithm
ASTRO is a constraint-based variant of the 𝐴∗ algorithm that op-
timizes for travel time. Being an optimal 𝐴∗ variant means that
ASTRO is guaranteed to have optimal edge selection when travers-
ing the graph [3].

Given an Indoor-Outdoor graph, ASTRO behaves like standard
𝐴∗, traversing the graph over the outdoor vertices but then at each
step also expands the current outdoor vertex 𝑣𝑐 ’s Indoor Graph
𝐺
𝑣𝑐
𝑖𝑛𝑑𝑜𝑜𝑟

to find the best ordered pair of indoor vertices to use as the
entry and exit for the current outdoor vertex 𝑣𝑐 . Unlike standard𝐴∗
when an edge is expanded it may be pruned if it no longer meets the
constraints Π = (𝐸,𝑇 ,𝐶,𝐴). Pruning edges in this manner allow us
to avoid constructing the complete Indoor-Outdoor graph, which
would be prohibitively expensive.
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As mentioned above, in ASTRO, the unit of measure for both
the exact cost function 𝑔() and estimated cost heuristic ℎ() is time
rather than distance. The exact cost 𝑔() for an outdoor vertex is
the sum of the time it takes to traverse to the current vertex, and
the heuristic cost ℎ() is an estimate of the amount of time it will
take to reach the terminal vertex from the current vertex. This
change in unit of measure is accomplished by simply multiplying
the distance traversed by the average walking speed of a person
(1.4𝑚/𝑠) [13, 19].

𝑜𝑢𝑡𝑑𝑜𝑜𝑟_𝑡𝑖𝑚𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

1.4𝑚/𝑠 (1)

For paths within between indoor vertices, congestion is also taken
into account when calculating time. This is done by also adding
the product of the distance with the predicted congestion of that
distance. Since 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 is a fraction, we use 1 + 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 to
modify distance in order to maintain the monotonic nature of the
equation.

𝑖𝑛𝑑𝑜𝑜𝑟_𝑡𝑖𝑚𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ (1 + 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛)

1.4𝑚/𝑠 (2)

This change from distance to time although simple is critical to the
algorithm as it allows ASTRO to dynamically compute predicted
congestion based on the estimated time of arrival.

3 LEAST-CONGESTION PATH FINDING
In this section, we formalize the problem of least congestion path
finding (Section 3.1), discuss a few key assumptions we have made
about this problem (Section 3.2), and present our algorithm ASTRO-
C (Section 3.3).

3.1 Problem Definition
Definition 3.1. Given an Indoor-Outdoor graph𝐺 (𝑉𝑜 , 𝐸𝑜 ,𝐺𝑖𝑛𝑑𝑜𝑜𝑟 ),

a source outdoor vertex 𝑣𝑠 , a terminal outdoor vertex 𝑣𝑡 , a departure
time 𝐷 , and a set of constraints Π = (𝐸,𝑇 ,𝐶,𝐴), find the constraint-
satisfying path with the minimal summed congestion which would
be experienced by the user.

The metric for “congestion experienced by the user” is the aver-
age congestion experienced at the time the user would arrive at the
given indoor path. The path returned must still satisfy the given
maximum congestion constraint 𝐶 outlined above.

3.2 Key Assumptions
Before presenting the algorithm, let us first outline two key assump-
tions that are used by ASTRO-C.

Assumption 1: As long as a metric is monotonically increasing,
it can be used as the basis for a path finding cost function.

Although typically when path finding, metrics such as distance
or time are used, this does not necessarily have to be the case. Using
this assumption, our cost function can be based on the sum of any
metric within our path. This key idea is what enables ASTRO-C’s
least-congestion path finding. By leveraging the predicted conges-
tion metrics, 𝐸𝑝𝑖𝑐𝐺𝑒𝑛 [2] produces for a given indoor path and
arrival time (𝜇, 𝜎 ,𝑚𝑖𝑛,𝑚𝑎𝑥), we can create a cost function which

ranks paths based on the sum of the average congestion along the
path as described in Equation 3.

However, the previous congestion is unable to predict future
congestion with any guarantees. Thus, the major limitation of a
cost function calculated this way is that we were unable to create a
useful path finding heuristic with any guarantees of optimally.

𝑔(𝑝𝑎𝑡ℎ) =
∑︁

𝑒∈𝑝𝑎𝑡ℎ.𝐸𝑖
𝑒 [𝑎𝑣𝑔_𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛] (3)

ℎ(𝑝𝑎𝑡ℎ) = 𝑝𝑎𝑡ℎ[𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒] + 𝑡𝑖𝑚𝑒_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑝𝑎𝑡ℎ) (4)

Assumption 2: The heuristic function ℎ() can be decoupled
from the cost function 𝑔() and thus need not use the same metrics.

The goal of a heuristic function is to allow us to reduce our
computational cost by using our knowledge of the graph to better
select edges during path finding. Although we were unable to create
a heuristic with guarantees for our congestion-based cost function,
using this assumption, we were still able to optimize our search.
ASTRO-C employs a cost-based search algorithm using heuristic
priority, where if there are choices with equivalent cost the heuristic
is able to determine priority (Algorithm 1). Using Equation 3 as the
congestion-based cost function, and the time-based cost/heuristic
functions of ASTRO as our heuristic (Equation 4), we are now able
to rank equivalent paths with priority. This is most helpful in case
such as comparing two different indoor paths of the same outdoor
vertex.

Algorithm 1: New priority queue compare function com-
patible with both ASTRO / ASTRO
Input: 𝑣1: Outdoor Vertex, 𝑣2: Outdoor Vertex,
Output: 𝑣1 < 𝑣2

1: if 𝑣1 [𝑓 𝑠𝑐𝑜𝑟𝑒] ≠ 𝑣2 [𝑓 𝑠𝑐𝑜𝑟𝑒] then
2: return 𝑣1 [𝑓 𝑠𝑐𝑜𝑟𝑒] < 𝑣2 [𝑓 𝑠𝑐𝑜𝑟𝑒]
3: else return 𝑣1 [ℎ𝑠𝑐𝑜𝑟𝑒] < 𝑣2 [ℎ𝑠𝑐𝑜𝑟𝑒]

3.3 ASTRO-C
Using the cost and heuristic functions defined in the previous sec-
tion,ASTRO-C provides a solution to the problem of least-congestion
path finding (Algorithm 2).

High-Level Idea:ASTRO-C contains a priority queue of outdoor
vertices and at each step the least-congestion, non-closed outdoor
vertex is explored. The exploration consists of constructing the ver-
tex’s indoor graph, finding the least congested indoor path, adding
the outdoor vertex with the information about the outdoor/indoor
path into the queue, and then setting the outdoor vertex as closed.
Each outdoor vertex is only expanded once before being set to
closed, in order to minimize expensive indoor graph constructions.
Once the terminal outdoor vertex is the head of the queue, we have
found the least-congestion path and terminate path finding.

Algorithm: First, the outdoor vertex priority queue𝑂𝑃𝐸𝑁 with
the source vertex 𝑣𝑠 and the empty set of outdoor vertices𝐶𝐿𝑂𝑆𝐸𝐷
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Algorithm 2: ASTRO / ASTRO-C
Input: 𝑣𝑠 : Source Outdoor Vertex, 𝑣𝑡 : Terminal Outdoor

Vertex, 𝑂 : Set of Outdoor Vertices, Π Set of
User-Given Constraints, 𝑡𝑜𝐴𝑑𝑑 Macro: Algorithm 3

Output: 𝑝: best path

1: Initialize Priority Queue 𝑂𝑃𝐸𝑁 and Set 𝐶𝐿𝑂𝑆𝐸𝐷
2: 𝑂𝑃𝐸𝑁 .𝑝𝑢𝑠ℎ(𝑣𝑠 )
3: while !𝑂𝑃𝐸𝑁 .𝑒𝑚𝑝𝑡𝑦 () do
4: 𝑐𝑢𝑟𝑟 ← 𝑂𝑃𝐸𝑁 .𝑝𝑜𝑝 ()
5: if 𝑐𝑢𝑟𝑟 = 𝑣𝑡 then return 𝑝 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑃𝑎𝑡ℎ(𝑐𝑢𝑟𝑟 )
6: else if 𝑐𝑢𝑟𝑟 ∉ 𝐶𝐿𝑂𝑆𝐸𝐷 then
7: 𝐶𝐿𝑂𝑆𝐸𝐷 ← 𝐶𝐿𝑂𝑆𝐸𝐷 ∪ 𝑐𝑢𝑟𝑟
8: for 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 ∈ {𝑂 −𝐶𝐿𝑂𝑆𝐸𝐷} do
9: 𝐼𝑛𝑑𝑜𝑜𝑟𝐺𝑟𝑎𝑝ℎ ← 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 [𝐼𝑛𝑑𝑜𝑜𝑟𝐺𝑟𝑎𝑝ℎ]
10: for 𝑖𝑛 ∈ 𝐼𝑛𝑑𝑜𝑜𝑟𝐺𝑟𝑎𝑝ℎ do
11:

−→
𝑠𝑡1 ← 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑐𝑢𝑟𝑟 [𝑜𝑢𝑡], 𝑖𝑛, 𝑐𝑢𝑟𝑟 [𝑡𝑖𝑚𝑒])

12: for 𝑜𝑢𝑡 ∈ {𝐼𝑛𝑑𝑜𝑜𝑟𝐺𝑟𝑎𝑝ℎ − 𝑖𝑛} do
13: 𝑒𝑥𝑖𝑡𝑇𝑖𝑚𝑒 ← 𝑐𝑢𝑟𝑟 [𝑡𝑖𝑚𝑒] + −→𝑠𝑡1 [𝑡𝑖𝑚𝑒]
14:

−→
𝑠𝑡2 ← 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑖𝑛, 𝑜𝑢𝑡, 𝑒𝑥𝑖𝑡𝑇𝑖𝑚𝑒)

15:
−→
𝑠𝑡 ← −→𝑠𝑡1 + −→𝑠𝑡2

16: 𝑔← 𝑐𝑢𝑟𝑟 [𝑔] + −→𝑠𝑡 [𝑔]
17: if 𝑔 < 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 [𝑔] and

𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (Π,−→𝑠𝑡 ) then
18: 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 [𝑔] ← 𝑔

19: Initialize outdoor vertex 𝑡𝑜𝐴𝑑𝑑
20: Remove any vertices with the same

outdoor vertex as 𝑡𝑜𝐴𝑑𝑑 from
𝑂𝑃𝐸𝑁

21: 𝑂𝑃𝐸𝑁 .𝑝𝑢𝑠ℎ(𝑡𝑜𝐴𝑑𝑑)
end

end
end

end
end

end

(Line 1-2) are initialized. It should be pointed out that 𝑣𝑠 is initialized
with the departure time 𝐷 before being passed to ASTRO-C. From
there, ASTRO-C will continue to loop (Lines 3-19) until either the
destination has been found (Line 5) or the priority queue 𝑂𝑃𝐸𝑁 is
empty and the set of outdoor vertices has been exhausted, meaning
no path exists.

The loop starts by setting our outdoor vertex 𝑐𝑢𝑟𝑟 to the head
of 𝑂𝑃𝐸𝑁 and then pops the head from the priority queue (Line 4).
As described earlier, the current outdoor vertex is then checked
to see if it is the user’s destination (Line 5). If not, the algorithm
continues by checking if 𝑐𝑢𝑟𝑟 has already been visited (Line 6). If
it has, we break out and move on to the next vertex in the queue.
If it has not been visited, ASTRO-C will proceed to construct the
outdoor vertex’s indoor graph (Line 8).

Once the edges have been populated with congestion values, a
loop between every pair of indoor vertices finds the best outdoor +

Algorithm 3: 𝑡𝑜𝐴𝑑𝑑 Vertex Initialization Macro
𝑡𝑜𝐴𝑑𝑑 ← 𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑉𝑒𝑟𝑡𝑒𝑥 (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑖𝑛, 𝑐𝑎𝑚𝑒𝐹𝑟𝑜𝑚,𝑔, ℎ, 𝑓 )
⊲ ASTRO

𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑉𝑒𝑟𝑡𝑒𝑥 (−→𝑠𝑡 , 𝑖𝑛, 𝑐𝑢𝑟𝑟, 𝑔, ℎ(𝑜𝑢𝑡, 𝑡), 𝑔 + ℎ)
⊲ ASTRO-C

𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑉𝑒𝑟𝑡𝑒𝑥 (−→𝑠𝑡 , 𝑖𝑛, 𝑐𝑢𝑟𝑟, 𝑔, ℎ(𝑜𝑢𝑡, 𝑡), 𝑔)

indoor path (Lines 10-19). The outdoor path is constructed using
the indoor vertex 𝑜𝑢𝑡 of 𝑐𝑢𝑟𝑟 as the start and the indoor vertex 𝑖𝑛
we are currently exploring as the end (Line 11). The indoor path is
constructed using that same indoor vertex 𝑖𝑛 but now as the start
and the indoor vertex 𝑜𝑢𝑡 we are currently exploring as the end
(Line 13). Once the indoor path is constructed, we join this with the
outdoor path and calculate the cost (Line 15-16). The cost is then
compared to the current best path within the outdoor vertex and
the constraints (Line 17).

If the path passes this check, the current best path within the
outdoor vertex is updated (Line 18), an outdoor vertex 𝑡𝑜𝐴𝑑𝑑 with
the appropriate information is initialized (Line 19 / Algorithm 3),
any vertex in the queue with the same outdoor vertex as 𝑡𝑜𝐴𝑑𝑑
is removed from the queue (Line 20), and 𝑡𝑜𝐴𝑑𝑑 is pushed to the
queue (Line 21).

4 RANDOM GRAPH GENERATOR
In order to be able to run experiments which could replicate a
wide variety of scenarios, we built a configurable Indoor-Outdoor
graph 𝐺 (𝑉𝑜 , 𝐸𝑜 ,𝐺𝑖𝑛𝑑𝑜𝑜𝑟 ) generator. The graph generator has the
following six configuration parameters that define the Outdoor
Graph (i.e., the buildings and their positions) and the level of the
congestion in the different outdoor vertices:
• 𝑁 - Number of Buildings (Integer),
• 𝑃 - Total Area Covered by the 𝑁 Buildings (%),
• ℎ - High Congestion Buildings (%),
• 𝑚 - Medium Congestion Buildings (%),
• 𝑙 - Low Congestion Buildings (%),
• 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 - Constant Congestion (𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒).

The specific characteristics of each outdoor vertex’s Indoor Graph
𝐺𝑖𝑛𝑑𝑜𝑜𝑟 are randomly generated. This process, as well as the graph
generation as a whole are described in the next section.

4.1 Graph Overview
The graph we generate is built upon a 2-dimensional square grid.
Each pair of 𝑥 and 𝑦 coordinates is a place where an outdoor vertex
could be generated. Each outdoor vertex is randomly determined
to have between 2-5 indoor vertices, the exact location of which
is generated by adding a random polar coordinate offset (𝑟, 𝜃 ) to
the 𝑥 and 𝑦 of the outdoor Vertex. A Polar coordinate offset allows
us to easily set a bound on the maximum distance away from the
outdoor vertex using 𝑟 , and equally partition the areas an indoor
vertex can be placed using 𝜃 . This is important for multitude of
reasons:

(1) Setting a lower bound for 𝑟 guarantees there will always be
at least some indoor time traversing a building;
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Figure 2: Visualization of the area that a new indoor vertex
𝑣𝑖 can be placed around a coordinate (Top Left); Example of
a generated Outdoor Vertex with 4 indoor vertices 𝑣𝑖−𝑛 (Top
Right); Example of fully generated graph 𝐺 using the graph
generation parameters 𝑁 = 4, 𝑃 = 0.5 (Bottom).

(2) Setting an upper bound for 𝑟 guarantees our the area the
indoor vertices can be located will never overlap between
outdoor vertices;

(3) Assigning ranges of 𝜃 to each indoor vertex allows us to
distinctly partition the space around the outdoor vertex,
guaranteeing no overlapping indoor vertices.

A visualization of the total space indoor vertices can occupy,
an example of a fully generated outdoor vertex, including lines to
visualize the 𝜃 partitions, and a visualization of a fully generated
random graph can be found in Figure 2. Please note the shape of the
building is not important, what is important is that the buildings
do not overlap and the doors define a possible topology.

It’s important to note that since CAPRIO is built for the real-
world coordinates, these 𝑥 and 𝑦 values would typically correspond
to latitudes and longitudes. This means that in our generated graph
the distance between two vertically or horizontally adjacent points
would be around 111𝑘𝑚. To make our results more akin to what
would be typical of an urban environment, we have scaled our
experimental results down by a factor of 11100. This means, that
instead of 111𝑘𝑚, the distance between two adjacent points is 10𝑚.

4.2 Graph Generation Algorithm
The generation process, using the parameters we described above,
is outlined in Algorithm 4.

First, the generator initializes the new Indoor-Outdoor graph
𝐺 we are generating (Line 1) and the bounds of the graph’s 2D
grid are calculated in such a way that ensures there are enough
spaces for every building with the coverage parameter (Line 2-3). To
generate the locations of the outdoor vertices an array containing
all possible points in the grid is created (Line 4), and then, these

Table 1: Random Graph Generator Parameters

Symbol Definition Default Range
𝑁 Number of Buildings 100 25,50,100,200
𝑃 Total Area Covered by 𝑁 Buildings 75% 25%, 50%, 75%
ℎ High Congestion Buildings 30% 4%, 27%, 69%
𝑚 Medium Congestion Buildings 40% 4%, 27%, 69%
𝑙 Low Congestion Buildings 30% 4%, 27%, 69%

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Buildings with Constant Congestion False True, False

values are randomly shuffled before initializing the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 array
using the first 𝑁 values (Lines 5-6). For each value in 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 , the
coordinates 𝑥 and 𝑦 are calculated (i.e., if the 𝑏𝑜𝑢𝑛𝑑𝑠 are 5, and 𝑏
is 14, then 𝑥 = ⌊ 145 ⌋ and 𝑦 = 14 mod 5) and the outdoor vertex is
added to 𝐺 (Lines 8-10).

Once the outdoor vertex has been added the graph and the num-
ber of indoor vertices, 𝑑𝑜𝑜𝑟𝑠 , has been decided (Lines 10-11), the
location and congestion of the indoor vertices can then be gener-
ated. The location of the indoor vertex is determined by a Polar
offset from the outdoor vertex’s Cartesian coordinates for the rea-
sons outlined in the section above. To do this, we generate (1) a 𝑟
value with a bound of [0.1, 0.4) (Line 14), and (2) a 𝜃 value with a
bound of [0, 360

𝑑𝑜𝑜𝑟𝑠
). To calculate the location of the indoor vertex

using this offset, it is converted to Cartesian values, then adding to
the location of the outdoor vertex (Line 17).

The congestion for the indoor vertex is decided by retrieving a
random variable from a Gaussian distribution with a mean deter-
mined by the level of congestion the building is supposed to have
and a standard deviation of 0.2, or it is given a constant value of
1 if the 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 parameter is set (Lines 18-21). The high conges-
tion buildings have a mean of 2𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2, the medium congestion
buildings have a mean of 1.25𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2, and the low congestion
buildings have a mean of 0.75𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2. The values were based
around the standard social distancing guidelines of 1𝑝𝑒𝑟𝑠𝑜𝑛/𝑚2.
Once the indoor vertex’s congestion is generated it is added to the
outdoor vertex’s Indoor Graph (Line 22).

It’s important to note that Lines 18-21 simplify the congestion
generation into one value, however, in practice a 24-hour time-
series of 5-minute intervals is generated. The congestion used in
our generated graph is static throughout the day so the one value
populates the entire time-series, but in our real-world data sets this
is not the case. In Section 6 of this paper, we address this short-
coming with an experiment evaluating how ASTRO-C performs
with graphs simulating congestion patterns typical of various times
throughout the day.

5 EXPERIMENTAL METHODOLOGY
This section provides details regarding the algorithms, random
graph generator configurations, and metrics used for the evalua-
tion of ASTRO-C.

Algorithms: To our knowledge, ASTRO is the current state-of-
the-art in Indoor-Outdoor path-finding using predictive congestion.
By comparing ASTRO-C to ASTRO, we are able to gain insight into
the different paths that may be recommended to users of CAPRIO.
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Algorithm 4: Graph Generation
Input: 𝑁 : Buildings, 𝑃 : Coverage (%), ℎ: High Congestion

(%),𝑚: Medium Congestion (%), 𝑙 : Low Congestion
(%), 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 : Constant Congestion

Output: 𝐺 : Indoor-Outdoor Graph

⊲ Step 1: Initialize Graph and Calculate the Grid’s Bounds
1: 𝐺 ← 𝑛𝑒𝑤 𝐼𝑛𝑑𝑜𝑜𝑟𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝐺𝑟𝑎𝑝ℎ

2: 𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 ← 𝑁 /𝑃
3: 𝑏𝑜𝑢𝑛𝑑𝑠 ←

⌈√
𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎

⌉
⊲ Step 2: Generate Coordinates for Outdoor Vertices

4: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 ← 𝑅𝑎𝑛𝑔𝑒 (0, 𝑏𝑜𝑢𝑛𝑑𝑠2)
5: 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠)
6: 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 [0, 𝑁 − 1]
⊲ Step 3: Generate Coordinates for Indoor Vertices

7: for 𝑖 ← 0; 𝑖 < 𝑁 ; 𝑖 + + do
8: 𝑏 ← 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 [𝑖]
9: (𝑏𝑥 , 𝑏𝑦) ← ( 𝑏

𝑏𝑜𝑢𝑛𝑑𝑠
, 𝑏 %𝑏𝑜𝑢𝑛𝑑𝑠)

10: 𝐺.𝑎𝑑𝑑 (𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑉𝑒𝑟𝑡𝑒𝑥 (𝑖𝑑 = 𝑏, 𝑥 = 𝑏𝑥 , 𝑦 = 𝑏𝑦)
11: 𝑑𝑜𝑜𝑟𝑠 ← 𝑟𝑎𝑛𝑑 (2, 5)
12: 𝑑𝑒𝑔_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 360

𝑑𝑜𝑜𝑟𝑠

13: for 𝑗 ← 0; 𝑗 < 𝑑𝑜𝑜𝑟𝑠; 𝑖 + + do
⊲ Step 4: Generate Offset for Current Indoor Vertex

14: 𝑟 ← 𝑟𝑎𝑛𝑑 (0.1, 0.4)
15: 𝜃 ← ( 𝑗 ∗ 𝑑𝑒𝑔_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 + 𝑟𝑎𝑛𝑑 (0, 𝑎𝑛𝑔𝑙𝑒_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛))
16: 𝜃 ← 𝜃 ∗ 𝜋

180 /* convert to radians */

17: (𝑑𝑥 , 𝑑𝑦) ← (𝑏𝑥 + 𝑟 ∗ 𝑐𝑜𝑠𝜃, 𝑏𝑦 + 𝑟 ∗ 𝑠𝑖𝑛𝜃 )
⊲ Step 5: Generate Congestion for Current Indoor
Vertex

18: if 𝑖 < 𝑁 × ℎ then
𝑐𝑜𝑛 ← 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇 = 2, 𝜎 = 0.2)

end
19: else if 𝑖 < 𝑁 (ℎ +𝑚) then

𝑐𝑜𝑛 ← 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇 = 1.25, 𝜎 = 0.2)
end

20: else
𝑐𝑜𝑛 ← 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇 = 0.75, 𝜎 = 0.2)$;

end
21: if 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑐𝑜𝑛 < 0 then 𝑐𝑜𝑛 ← 1
22: 𝐺 [𝑏] .𝑎𝑑𝑑 (𝐼𝑛𝑑𝑜𝑜𝑟𝑉𝑒𝑟𝑡𝑒𝑥 (𝑖𝑑 = 𝑗, 𝑥 = 𝑑𝑥 , 𝑦 =

𝑑𝑦, 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑛)
end

end

Methodology: A test of ASTRO and ASTRO-C on the University
of Pittsburgh and University of Cyprus data sets using CAPRIO pro-
vided no significant insights. However, the use of generated graphs
inspired by these real-world data sets allows us to perform a through
sensitivity analysis, which would otherwise not be possible.

In order to provide a holistic view and gain insights into the
trends, a generated a set of 10 random graphs with a given set
of parameters was used for each run of an experiment. Addition-
ally, we are providing the average of the results of these 10 graphs,

which illustrates the average case given a configuration, rather than
focusing only on a single case using a single configuration.

Graph Configuration: The configuration used as the default
for our graph generator is 𝑁 = 100, 𝑃 = 0.75, ℎ = 0.3, 𝑚 = 0.4,
𝑙 = 0.3, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐹𝑎𝑙𝑠𝑒 . The experimental range of values for the
parameters are summarized in Table 1.

Path Finding Constraints: The path finding constraints are
𝐸 = 30𝑚, 𝑇 = (2 ∗ 𝑔𝑟𝑎𝑝ℎ_𝑏𝑜𝑢𝑛𝑑𝑠 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/1.4, 𝐶 = 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ,
and 𝐴 = 𝐹𝑎𝑙𝑠𝑒 . Although, total time is typically a smaller value and
congestion is typically bound in the real-world use case, by mini-
mizing the number of number of paths pruned via these constraints,
our experimental results highlight only the differences caused by
ASTRO-C’s modifications to ASTRO.

Metrics: In each trial we record a number of measurements to
evaluate ASTRO and ASTRO-C. Each metric can be broken down
into one of three different categories: time, congestion, and com-
putational cost. Additionally, each metric in all three categories is
accompanied by a performance ratio (ASTRO-C / ASTRO).

• Time Metrics (in 𝑠𝑒𝑐𝑜𝑛𝑑𝑠):
– Total Time: time to traverse entire path.
– Indoor Time: time to traverse indoor sections of a path.
– Outdoor Time: time to traverse outdoor sections of a path.
• Congestion Metrics (in #𝑜 𝑓 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2):
– Average Congestion: average of all the indoor paths’ aver-
age congestion.

– Minimum Congestion: minimum indoor path average con-
gestion.

– Maximum Congestion: maximum indoor paths average
congestion.

• Computational Cost Metrics (in # of vertices manipulations):
– Outdoor Vertices Dequeued: incremented on Line 4 of
Algorithm 2.

– Outdoor Vertices Expanded:incremented on Line 8 of Al-
gorithm 2.

– Indoor Vertices Expanded: incremented on Line 10 of Al-
gorithm 2 for entrances 𝑖𝑛 and on Line 12 of Algorithm 2
for exits 𝑜𝑢𝑡 .

6 EXPERIMENTAL RESULTS
To evaluate ASTRO-C performance characteristics with respect to
achieved congestion reduction, computational cost, total traveling
time of the recommended path, and scalability, we carried out six
experiments. In each experiment, any non-specified graph genera-
tion or path finding constraints can be assumed to be the default
values defined in the previous section and listed in Table 1. Recall,
the path finding constraints 𝑇 and 𝐶 are practically unbounded as
to minimize paths pruned via these constraints, to highlight the dif-
ference in path recommendations caused by the cost and heuristic
functions.

The scalability experiments were designed using data sets based
on OpenStreetMaps (OSM) [18] data for the University of Pitts-
burgh and University of Cyprus campuses. As an urban campus,
the Pittsburgh campus consists of more than 100 buildings in an
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Total Time

Outdoor Vertices
Dequeued

Outdoor Vertices
Expanded

Indoor Vertices Explored
(Entrances | Exits)

ASTRO 416.0 31101.0 121835.0 | 377448.0
ASTRO-C 2299.0 183401.0 718355.0 | 2224968.0
Performance Ratio
(ASTRO-C / ASTRO) 5.53X 5.90X 5.90X | 5.90X

Total Time (𝑠) Indoor Time (𝑠) Outdoor Time (𝑠)
ASTRO 1747348.85 82472.64 1664876.21
ASTRO-C 1747348.85 82472.64 1664876.21
Performance Ratio
(ASTRO-C / ASTRO) 1.0X 1.0X 1.0X

Figure 3: Comparison of ASTRO vs. ASTRO-C in Constant
Congestion Environments

area of 0.75 square miles, whereas the Cyprus campus as a suburb
campus consists of a small number of clusters of buildings/athletic
installations spread over an area of 1.25 square miles.

6.1 Experiment 1: ASTRO vs ASTRO-C Paths
with Constant Congestion

Our first experiment, shown in Figure 3, explores how ASTRO and
ASTRO-C compare in constant congestion environments. Since
ASTRO-C tiebreaks with the cost and heuristic functions of AS-
TRO the paths should be the same. As we can see in our results,
ASTRO-C continues to incur additional computational cost but does
recommend the same path.

Summary: : In constant congestion environments, ASTRO and
ASTRO-C will recommend the same paths.

6.2 Experiment 2: ASTRO vs. ASTRO-C Paths
Our second experiment, shown in Figure 4, compares the results of
ASTRO and ASTRO-C across all recorded metrics using the standard
graph generation configuration. The purpose of this experiment
is to gain insight into the behaviour of the two algorithms in the
general case.

Looking at our results we can see three major trends:
• First, we can see that ASTRO-C incurs a large computational
cost. Specifically, it explores on average 7.55𝑋 more of ver-
tices than ASTRO. This is because ASTRO-C does not have
an optimal heuristic and is not able to prune many of the
paths ASTRO is (as discussed in Section 3.2).
• Second, ASTRO-C is able to consistently recommend paths
with similar travel times as ASTRO. Specifically, the travel
time increases on average by 1.06𝑋 and never exceeds 1.10𝑋
compared to ASTRO.
• Finally, ASTRO-C is able to significantly reduce the amount
of congestion across all metrics. On average, ASTRO-C is
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Indoor Vertices Explored
(Entrances | Exits)

ASTRO 162.0 12381.0 49043.0 | 154915.6
ASTRO-C 1222.4 99541.0 394642.0 | 1248531.6
Performance Ratio
(ASTRO-C / ASTRO) 7.55X 8.04X 8.05X | 8.06X

Total Time (𝑠) Indoor Time (𝑠) Outdoor Time (𝑠)
ASTRO 158.04 7.70 150.34
ASTRO-C 166.95 14.61 152.34
Performance Ratio
(ASTRO-C / ASTRO) 1.06X 1.90X 1.01X

Average Congestion
(# 𝑜 𝑓 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2)

Minimum Congestion
(# 𝑜 𝑓 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2)

Maximum Congestion
(# 𝑜 𝑓 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚2)

ASTRO 0.97 0.06 2.21
ASTRO-C 0.60 0.05 1.23
Performance Ratio
(ASTRO-C / ASTRO) 0.62X 0.83X 0.56X

Figure 4: Comparison of ASTRO vs. ASTRO-C Paths

able to recommend paths with 0.62𝑋 less average congestion
and in the best case it achieved a reduction of 0.56𝑋 .

Summary: Consistently, ASTRO-C is able to recommend paths
with less average congestion and similar total travel time as ASTRO,
while retaining the same interactive characteristics as ASTRO.

6.3 Experiment 3: Varying the Number of
Buildings

Our third experiment, shown in Figure 5, compares the recom-
mended paths of ASTRO-C and ASTRO as the number of outdoor
vertices (buildings), 𝑁 , scales while keeping 𝑃 (percentage of area
coverage) constant to the default value. This should keep the num-
ber of options within the Outdoor Exposure 𝐸 constraint similar
while increasing the number of buildings in the path.

Looking at our results we can see that as 𝑁 increases, there
is a slight increase in the total time performance ratio but not a
decrease in the congestion performance ratio like we might expect.
This is likely due to the high congestion buildings becoming less of
a factor in the average ASTRO congestion while ASTRO-C is finding
buildings approaching the lower bound of the possible congestion
values. As we described in Section 4.2, the mean for the congestion
assigned to low congestion outdoor vertices was 0.75 with the
default deviation of 0.2.
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N = 200 229.49 243.14 1.06X 0.95 0.64 0.67X
Average 143.54 150.59 1.05X 0.98 0.66 0.69X

Figure 5: Comparison of ASTRO vs. ASTRO-C as the Number
of Buildings Scales

Summary: As 𝑁 scales, ASTRO-C is able to more reliably ap-
proach the lower bound of congestion within the graph while in-
curring only a slight increase in total time.

6.4 Experiment 4: Varying the Percentage of
Area Covered by Buildings

Our fourth experiment, shown in Figure 6, we vary 𝑃 , the percent-
age of the total area covered by outdoor vertices, while using the
default building values for 𝑁 . Increasing this value should increase
the number of vertices within the Outdoor Exposure 𝐸 constraint
at any given outdoor vertex. As 𝑃 decrease we see the difference
between the paths ASTRO and ASTRO-C recommend significantly
decrease. This is because, as the number of edges satisfying the out-
door exposure constraint decreases, the more likely it is ASTRO and
ASTRO-C have to choose the same edge.

Summary: As 𝑃 decreases, the differences between paths recom-
mended by ASTRO and ASTRO-C become less significant because
they are more often being forced to choose the same edges.

6.5 Experiment 5: Varying the Outdoor Time
Limit

Our fifth experiment, shown in Figure 7, varies 𝐸 from 15𝑚 to
60𝑚, the outdoor exposure constraint — 15𝑚 is the lower bound
to ensure there is always a path able to be found, while 60𝑚 is the
upper bound to ensure there is no direct path to the destination.
Similar to the last experiment, increasing this value may increase
the number of vertices within the outdoor exposure constraint at
any given outdoor vertex while keeping the number of buildings
the paths traverse through similar.

The results show at large values of 𝐸, outdoor vertices with
minimal congestion indoor paths that would typically be pruned
due to outdoor exposure are now available. Because of this, ASTRO-
C is able to drastically reduce the user’s exposure to congestion.

Summary: As 𝐸 increases, the difference in the congestion of
paths recommended by ASTRO and ASTRO-C increases as well.
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Figure 6: Comparison of ASTRO vs. ASTRO-C as the Building
Density Scales
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Figure 7: Comparison of ASTRO vs. ASTRO-C as the Outdoor
Time Constraint Scales

6.6 Experiment 6: Simulations at Different
Times of Day

Our final experiment, shown in Figure 8, tunes the parameters of
high, medium, and low congestion buildings to simulate various
times throughout the day. The three times we choose to simulate
are 07:00, 12:00, and 20:00. The parameter values for each simulation
are loosely based on what percentage of businesses would be open
in an urban environment at that time. The parameters used for each
simulation are as follows:
• 07:00: ℎ = 0.04,𝑚 = 0.69, 𝑙 = 0.27,
– Many business have opened but not many people
• 12:00: ℎ = 0.69,𝑚 = 0.27, 𝑙 = 0.04
– All businesses are open and there are many people
• 20:00: – ℎ = 0.27,𝑚 = 0.04, 𝑙 = 0.69
– Most business are close but the ones that are open typically
have many people (restaurants, etc.)
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Figure 8: Comparison of ASTRO vs. ASTRO-C in Simulations
of Various Times Throughout The Day

In the simulations, ASTRO-C is able to find paths with 0.76𝑋 less
congestion than ASTRO, on average. Even at peak times, when only
4% of buildings have low congestion, ASTRO-C is able to find paths
with comparable times to ASTRO.

Summary: Throughout the day, ASTRO-C is consistently able
to recommend paths than maintain an average congestion under
1𝑝𝑒𝑟𝑠𝑜𝑛/𝑚2 while having a similar total time to ASTRO.

7 RELATEDWORK
In this section we discuss work strongly related to the primary
contribution of this paper, ASTRO-C. A taxonomy of this discussion
can be found in Table 2.

While there is lots of research within the realm of pedestrian nav-
igation that use the terminology of congestion and path finding, of-
ten times these works are solving fundamentally different problems.
Primary examples being research centered around pedestrian evac-
uation systems [11, 21–23] and pedestrian simulations [5, 12, 16].
Evacuation systems although other measuring congestion in similar
ways to real-time data-dependent indoor path finding applications,
the problem of finding the best exit as opposed to path finding
enables solutions not practical for path finding applications. Simu-
lations of pedestrian behaviours tend to focus on emulating how
pedestrians react in congested spaces while traversing a path as op-
posed to recommending paths of least congestion. So as we can see,
although these topics are similar, they are not within the scope of
this paper. Congestion-aware path finding algorithms like ASTRO-
C fall into 2 categories: Real-Time Data-Driven and Predictive.

Real-Time Data Driven Congestion: Systems in this realm are
more similar to the evacuation systems and are more common in
the literature. These systems often take advantage of IoT devices /
wireless sensing technologies to localize users and then dynamically
update the congestion of the applicable areas. Recent work using
this approach include those used by Chen et al. [4] and Almari &
Almari [1]. In both papers, the authors take advantage of the sensors
available in their user’s smartphones to interact with other nearby
devices to reason about their indoor environments. In Chen et al [4],
these other devices are Bluetooth Low Energy (BLE) devices while

Table 2: Taxonomy of Related Work

Models Indoor
Space

Models Outdoor
Space Congestion Constraint-Based Cost Metric

ASTRO Yes Yes Predictive Yes Time
Chen et al. Yes No Real-Time No Time
Almari & Almari Yes No Real-Time No Time

Damian et al. Yes Yes Real-Time No Normalized Aggregated
Multi-Policy Cost

Liu et al. Yes No Predictive No Congestion
ASTRO-C Yes Yes Predictive Yes Congestion

in Almari & Almari, these are other users. A less IoT-based real-time
data-driven approach can be found in Damian et al. [9], which relies
upon its history of previously recommended paths to update the
environment and recommend least-congested paths. It is of note
that the work done by Damian et al. is able to find indoor-outdoor
paths and uses a multi-policy ranking systems to recommend paths,
congestion is just one of their policies, not the focus of the work.
The major limitation of all of these works being that there is no
accounting for users not using the application.

Predictive Congestion: The two main techniques recently used
for predicting congestion in the context of indoor path finding are
based on queuing theory and machine learning. Liu et al. [15] is an
example of the former. By modeling a building via the semantics of
a space, they are able to construct a graph of connected queues each
hyper-parameterized to simulate the congestion dynamics of a singe
semantic area (i.e., predicts congestion of an entire hallway using
one queue). EpicGen proposed in Chrysovalantis et al. [2] showcases
the machine learning-based approach. Using a grid-based building
model and a machine learning model trained on real-world data,
this approach is able to predict congestion for any grid cell in a
building at any time of the day (i.e., predicts congestion for a single
cell in a hallway). In ASTRO-C, we adopted the machine learning
based approach EpicGen inline with our previous work of CAPRIO.

8 CONCLUSIONS
The COVID-19 pandemic revealed the need for pedestrian recom-
mendation systems that can recommend paths which minimize
exposure to infectious diseases. This led us to define the least-
congestion path finding problem as the exposure to viral airborne
diseases is higher in crowded and congested spaces and introduce
ASTRO-C, an extension of our previous work ASTRO , which opti-
mizes for minimum congestion while still taking advantage of time
as a heuristic cost. We further developed a random Indoor-Outdoor
graph generator for modeling various real-world scenarios enabling
detailed experimentation.

Our experimental results show that on average, ASTRO-C is able
to recommend paths with a 0.62𝑋 reduction in average conges-
tion and a total travel time increase of 1.06𝑋 compared to ASTRO.
These congestion reduction gains come at the cost of increased
computation. Compared to ASTRO , ASTRO-C explores an aver-
age 7.55𝑋 more vertices (i.e., buildings), due to having no optimal
congestion path finding heuristic. Despite this it scales well in a
number of graph simulations while retaining the same interactive
characteristics as ASTRO.

Althoughwewere unable to construct a congestion-based heuris-
tic, we remain hopefully that it is possible and leave this as the



SSTD ’23, August 23–25, 2023, Calgary, AB, Canada V. E. Sarris, P. K. Chrysanthis and C. Costa

first major area of future work. The second area we feel has lots of
potential is within enabling the random graph generator to produce
realistic time-dependent dynamic congestion throughout the day
by leveraging 𝐸𝑝𝑖𝑐𝐺𝑒𝑛 [2], our experimental platform for detailed
indoor congestion generation.
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